If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2^x*3^x=1296
We move all terms to the left:
2^x*3^x-(1296)=0
Wy multiply elements
6x^2-1296=0
a = 6; b = 0; c = -1296;
Δ = b2-4ac
Δ = 02-4·6·(-1296)
Δ = 31104
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{31104}=\sqrt{5184*6}=\sqrt{5184}*\sqrt{6}=72\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-72\sqrt{6}}{2*6}=\frac{0-72\sqrt{6}}{12} =-\frac{72\sqrt{6}}{12} =-6\sqrt{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+72\sqrt{6}}{2*6}=\frac{0+72\sqrt{6}}{12} =\frac{72\sqrt{6}}{12} =6\sqrt{6} $
| 6-6x^2=3x6−6x2=3x | | 2x^-x-4=0 | | 4x-7(x+3)=-3 | | 5x+9=8x-5 | | 5x–4=17+2x | | 5-15b-3b^2/5b-b^2=0 | | 3(x+2)^2=54 | | 22=2x-6+4-5x | | -8x2=512 | | 30x+75x=30x+350 | | -3(x+1)+10=-10(x+1)+7x | | 1÷2(5q+8)=4q-5 | | 3y+6=2(-y+3)+5 | | 2x-7+3x-4x+15=11 | | 30x+75x=350 | | n+3/4-n-2/5=n+1/10-1 | | 6(y-3)-2=22 | | 9-150x-40=21-15x-100x | | -x-13=x+1 | | 4x+10x/x+(-6)=2 | | -2+3(x-5)+2x=13 | | (b)/(9)-(1)/(2)=(5)/(18) | | 1/x+1/5=10 | | x6−2x=5x-9x+45x−9x+4 | | 2(y-3)/4=y+5/3 | | 5e^2=30 | | 1/x=1/5=10 | | 100=29.49*x^2 | | -2x-11=x+13 | | 10x+.10=35x | | 1/2x+1/3x(x-6)=5/6x+2 | | 2x-5=5x=15 |